Add like
Add dislike
Add to saved papers

Core-interlayer-shell Fe3O4@mSiO2@lipid-PEG-methotrexate nanoparticle for multimodal imaging and multistage targeted chemo-photodynamic therapy.

Multimodal imaging-guided multistage targeted synergistic combination therapy possesses many advantages including increased tumoricidal effect, reduced toxicity, and retarded drug resistance. Herein, we have elaborately developed a core-interlayer-shell structure Fe3O4@mSiO2@lipid-PEG-methotrexatenanoparticle(FMLM), in which the Fe3O4 core could be used for magnet-stimulate-response drug release, magnetic resonance imaging, and early-phase magnet targeting ability; the mSiO2 layer could encapsulate anticancer drug doxorubicin (Dox) for chemotherapy; and the protective shell of lipid-PEG and lipid-PEG-methotrexate offered later-phase specific cellular targeting ability, good water dispersibility, and loading of photosensitizer zinc phthalocyanine (ZnPc) for simultaneous near-infrared fluorescence imaging and photodynamic therapy. Both in vitro and in vivo studies indicated that the both Dox and ZnPc-loaded FMLM (Dox/ZnPc-FMLM) exhibited the enhanced tumor accumulation, increased cellular uptake, improved anticancer activity, and weaked side effects compared with Dox/ZnPc-Fe3O4@mSiO2@lipid-PEG nanoparticle (Dox/ZnPc-FML) and free drug. For the first time, magnet targeting cooperative with methotrexate macromolecular prodrug targeting is successfully exploited to develop a promising versatile theranostic nanoplatform for dual-modal fluorescence and magnetic resonance imaging-guided combined chemo-photodynamic cancer therapy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app