Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

17β-Estradiol protects against the effects of a high fat diet on cardiac glucose, lipid and nitric oxide metabolism in rats.

The aim of this study was to investigate the in vivo effects of 17β-estradiol (E2 ) on myocardial metabolism and inducible nitric oxide synthase (iNOS) expression/activity in obese rats. Male Wistar rats were fed with a normal or a high fat (HF) diet (42% fat) for 10 weeks. Half of the HF fed rats were treated with a single dose of E2 while the other half were placebo-treated. 24 h after treatment animals were sacrificed. E2 reduced cardiac free fatty acid (FFA) (p < 0.05), L-arginine (p < 0.01), iNOS mRNA (p < 0.01), and protein (p < 0.05) levels and translocation of the FFA transporter (CD36) (p < 0.01) to the plasma membrane (PM) in HF fed rats. In contrast, Akt phosphorylation at Thr308 (p < 0.05) and translocation of the glucose transporter GLUT4 (p < 0.05) to the PM increased after E2 treatment in HF rats. Our results indicate that E2 acts via the PI3K/Akt signalling pathway to partially protect myocardial metabolism by attenuating the detrimental effects of increased iNOS expression/activity in HF fed rats.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app