Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Antisense Reduction of Mutant COMP Reduces Growth Plate Chondrocyte Pathology.

Molecular Therapy 2017 March 2
Mutations in cartilage oligomeric matrix protein cause pseudoachondroplasia, a severe disproportionate short stature disorder. Mutant cartilage oligomeric matrix protein produces massive intracellular retention of cartilage oligomeric matrix protein, stimulating ER and oxidative stresses and inflammation, culminating in post-natal loss of growth plate chondrocytes, which compromises linear bone growth. Treatments for pseudoachondroplasia are limited because cartilage is relatively avascular and considered inaccessible. Here we report successful delivery and treatment using antisense oligonucleotide technology in our transgenic pseudoachondroplasia mouse model. We demonstrate delivery of human cartilage oligomeric matrix protein-specific antisense oligonucleotides to cartilage and reduction of cartilage oligomeric matrix protein expression, which largely alleviates pseudoachondroplasia growth plate chondrocyte pathology. One antisense oligonucleotide reduced steady-state levels of cartilage oligomeric matrix protein mRNA and dampened intracellular retention of mutant cartilage oligomeric matrix protein, leading to a reduction of inflammatory markers and cell death and partial restoration of proliferation. This novel and exciting work demonstrates that antisense-based therapy is a viable approach for treating pseudoachondroplasia and other human cartilage disorders.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app