JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Contribution of hydrochemical and geoelectrical approaches to investigate salinization process and seawater intrusion in the coastal aquifers of Chaouia, Morocco.

This study aims to identify groundwater salinization origin and to determine seawater intrusion extension toward the inland in Chaouia, Morocco. To reach these objectives, firstly, 46 groundwater samples were analyzed for major chemical elements during January 2012 and, secondly, 10 electrical resistivity tomography (ERT) profiles were performed perpendicularly to the coastal fringe. Statistical analysis provided the distinction between three Clusters reflecting different hydrochemical processes. Cluster I and Cluster II-a showed a high water electrical conductivity (EC) (from 2.3 to 11.2mS/cm) with the dominance of Na+ (668mg/L on average) and Cl- (1735mg/L on average) ions as a consequence of seawater intrusion. However, Cluster II-b presented low ECs (from 0.5 to 1.7mS/cm) and Ca2+ (99.6mg/L on average) and HCO3 2- (235.2mg/L on average) ions dominance. Water chemistry in these wells was controlled by water-rock interaction, cation exchange, and anthropogenic activities. The Hydrochemical Facies Evolution Diagram highlighted the succession of different water facies developed between intrusion and freshening phases. The formation of Na-HCO3 facies, which characterizes the last facies of freshening phase, followed the succession of Na-Cl, MixNa-MixCl, MixCa-MixCl, MixCa-MixHCO3 , and Na-HCO3 . In contrast, Na-Cl facies formation, which characterizes the last facies of intrusion phase, followed the evolution of Ca-HCO3 , Ca-MixHCO3 , Ca-MixCl, MixCa-MixCl, MixCa-Cl, and Na-Cl. Moreover, the obtained ERT results allowed determining the extent of different hydrochemical facies and provided more details about seawater intrusion extension. The conductive level assigned to seawater contamination showed a resistivity less than 36Ω.m, which remains limited to 3000m from the ocean, where Na-Cl water type dominates. The seawater intrusion depth varied between 5 and 40m from the surface. Overall, this original study in Chaouia region demonstrated the effectiveness of combining hydrochemical and ERT methods to investigate seawater intrusion, particularly in areas with restrictive water chemistry data.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app