Add like
Add dislike
Add to saved papers

[The effect of semimature dendritic cell and the levels of Treg on transplantation tolerance of hepatocytes differentiated from mouse embryonic stem cell].

Objective: To investigate the inducing effect and mechanism of semimature dendritic cell (smDCs) on transplantation tolerance of hepatocytes differentiated from mouse embryonic stem cells (ESCs), and to study the connections between smDCs and regulatory dendritic cells (regDCs). Methods: ESCs of 129 mouse labelled green fluorescent protein (GFP) were induced to hepatocytes by using previous methods. Meanwhile, bone marrow mononuclear cells of 129 mouse were induced to smDCs and regDCs. Moreover, the hepatocytes differentiated from 129 mouse ESCs were transplanted into liver of BALB/c mouse 3 days after infusing smDCs and regDCs suspension of 129 mouse into BALB/c mouse by tail vein respectively. After that, the growth status and survival time of transplanted cells in the recipient and infiltration of lymphocytes in transplant sites were observed. Furthermore, Foxp3 expression of peripheral blood CD4+ T cells was also tested. Results: In the control group, the transplanted cells in liver of BALB/c mouse survived only about 1 week. In contrast, the transplanted cells of smDC groups and regDCs groups survived about 4 weeks and the transplant sites of smDC groups also had less CD3(+) T cells. The morphology of smDCs were similar with regDCs. The expression of MHC-Ⅱ, CD40, CD80 and CD86 on smDCs and regDCs were moderate. Moreover, the Foxp3 expression of peripheral blood CD4+ T cells in smDC groups was higher than that in the control groups, from 1.11% up to 5.38%. The Foxp3 expression in regDC groups rose to 3.87%. Conclusion: The smDCs could induce transplantation tolerance of hepatocytes differentiated from 129 mouse ESCs in the recipient. The mechanism was associated with high level of Foxp3(+) Tregs, which could be increased by means of smDCs appropriate expression of MHC-Ⅱ, CD40, CD80 and CD86. The smDCs and regDCs were the same type of tolerance dendritic cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app