Add like
Add dislike
Add to saved papers

Nanoscale electrical properties of ZnO nanorods grown by chemical bath deposition.

Well-aligned zinc oxide nanorod arrays (ZNAs) synthesized using chemical bath deposition were fabricated on a gallium-doped zinc oxide substrate, and the effects of varying the precursor concentrations on the growth and nanoscale electrical properties of the ZNAs were investigated. The as-synthesized ZNAs were characterized using field-emission scanning electron microscopy (FESEM), atomic force microscopy (AFM), conducting atomic force microscopy (CAFM), and scanning surface potential microscopy (SSPM). The FESEM and AFM images show that the growth rate in terms of length and diameter is highly sensitive to the precursor concentration. CAFM and SSPM analyses indicate that when concentrations of both the zinc acetate and hexamethylenetetramine solutions were 30 mM, the coverage percentages of the recordable and conducting regions on the ZNA surface were 48.3% and 0.9%, which is suitable for application in resistive random access memory devices.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app