Journal Article
Research Support, Non-U.S. Gov't
Retracted Publication
Add like
Add dislike
Add to saved papers

Reciprocal regulation of miR-1254 and c-Myc in oral squamous cell carcinoma suppresses EMT-mediated metastasis and tumor-initiating properties through MAPK signaling.

AIM: This study aimed to determine the effect of miR-1254 on oral squamous cell carcinoma (OSCC) metastasis and the specific mechanism involved.

METHODS: The metastatic properties of OSCC cells were analyzed by transwell assays. The tumor-initiating properties of OSCC cells were analyzed by tumor sphere formation assays. The mRNA and protein expressions of targeted genes were determined by quantitative polymerase chain reaction assays and western blot analyses, respectively. Xenograft experiments were employed to evaluate the anti-metastatic effects of miR-1254 and miR-1254-mediated cancer stem cell (CSC) properties in vivo. The gene targets of miR-1254 were investigated by luciferase reporter assays. Chromatin immunoprecipitation assays were performed to observe the transcriptional regulation of miR-1254 biogenesis by transcription factor.

RESULTS: miR-1254 attenuated OSCC metastasis and tumor-initiating properties in vitro and in vivo. Consistent with the experimental observations, miR-1254 was decreased in late-stage OSCCs and strongly correlated with risk of OSCC metastasis. Moreover, miR-1254 was mechanistically shown to down-regulate MAP3K3, accompanied by inactivation of the MAPK signaling pathway and inhibition of epithelial-mesenchymal transition (EMT) in OSCC cells. miR-1254 was transcriptionally repressed by c-Myc to form a positive feed back loop through MAPK signaling.

CONCLUSION: Our findings suggest that miR-1254 is a potential target for the treatment of OSCCs, and miR-1254 can be clinically utilized as a biomarker for the clinical prognosis or diagnosis of OSCCs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app