Add like
Add dislike
Add to saved papers

Antitumoral effect and reduced systemic toxicity in mice after intra-tumoral injection of an in vivo solidifying calcium sulfate formulation with docetaxel.

BACKGROUND: Docetaxel is a cytostatic agent approved for treatment of non-small cell lung cancer as well as other cancers. Although docetaxel is an effective cytostatic agent, its effectiveness in clinical practice is associated with a variety of acute and long term side-effects. To overcome systemic side-effects, a slow release formulation based on calcium sulfate with docetaxel for intra-tumoral administration was developed.

METHODS: Two formulations with the calcium sulfate NanoZolid technology were generated with a twofold difference in docetaxel drug load. The formulations were injected intra-tumorally as a paste which solidified within the tumor. The effects of the two intra-tumoral injection formulations were tested in female mice (n=60) inoculated with subcutaneous Lewis lung carcinoma cells. The two formulations were compared to systemic intraperitoneal injection of docetaxel and a placebo formulation without docetaxel. Tumor volumes were measured and systemic side-effects were evaluated using body weight and cell counts from whole blood as well as plasma concentrations.

RESULTS: Both docetaxel formulations showed a significantly higher antitumor efficacy compared to placebo, which was comparable to that of systemic administration of docetaxel. Moreover, the intra-tumoral formulations with docetaxel showed reduced systemic toxicity compared to systemic treatment, including less weight loss and no decrease in blood cell counts.

CONCLUSIONS: The results suggest that intra-tumoral slow release calcium sulfate based formulations with docetaxel can be an alternative strategy as an efficient local antitumoral treatment with reduced systemic toxicity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app