Add like
Add dislike
Add to saved papers

Gold nanocages decorated biocompatible amine functionalized graphene as an efficient dopamine sensor platform.

Nanocomposite of gold nanocages and chemically modified graphene oxide (GNCs/CMG) was synthesized in N,N-dimethylformamide (DMF) for sensitive detection of dopamine (DA). DA is widely spread in central nervous system which can regulates essential body functions like movement and emotional behaviour. In this regard sensitive and fast detection of DA level in human body is still challenging considering its interference with other biomolecules in biological samples. CMG was synthesized through amine modification of graphene oxide (GO) with DMF at relatively high temperature followed by attachment of GNCs, fabricated using a galvanic replacement between silver nanocubes and HAuCl4 solution in the DMF. X-ray diffraction (XRD) pattern of GNCs/CMG nanocomposite revealed high crystallization of GNCs attached to the graphene nanosheets and microscopic images revealed relatively uniform decoration of GNCs on the surface of CMG. Nanocomposite modified glassy carbon electrode (GNCs/CMG/GCE) was used to investigate the electrochemical behaviour of DA with cyclic voltammetry and amperometry techniques. The linear range for dopamine was between 0.1 and 80μM with a low detection limit of 0.02μM. Furthermore, GNCs/CMG/GCE exhibited satisfying reproducibility, long-term stability and high selectivity for DA detection in large amount of ascorbic acid with good results for determination in human serum samples.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app