JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Factors affecting the distribution of haemosporidian parasites within an oceanic island.

Understanding how different ecological and evolutionary processes influence the distribution of pathogens within the environment is important from many perspectives including wildlife epidemiology, evolutionary ecology and conservation. The simultaneous use of ecological and evolutionary frameworks can enhance our conceptual understanding of host-parasite interactions, however such studies are rare in the wild. Using samples from 12 bird species caught across all habitats existing on an oceanic island, we evaluated how environmental variables, parasite host specificity and parasite phylogenetic relationships determine the distribution and prevalence of haemosporidians (Haemoproteus, Plasmodium and Leucocytozoon) in the wild living avifauna. Differences were found in the prevalence of Plasmodium, but not Leucocytozoon, strains between habitats. The warmest temperature best predicted Plasmodium prevalence in the low altitude habitats, which had the highest incidence of Plasmodium. The prevalence of Leucocytozoon lineages was associated with natural factors, i.e. rainfall, temperature and habitat, but the two most important predictors (from model averaging) for models of Leucocytozoon were anthropogenic: poultry farms and distance to a water reservoir. We found no relationship between local (Tenerife, Canary Islands) versus global host range indices (which assess the diversity of hosts that a parasite is observed to infect), thus global generalist lineages do not behave in the same way on Tenerife (i.e. they infected less avian hosts than was expected). Phylogenetic analysis revealed that the most abundant haemosporidians on Tenerife grouped with lineages found in African host species. Our data indicate that climatic and anthropogenic factors, plus proximity to the African mainland, are the main factors influencing the presence and distribution of avian haemosporidians on Tenerife. Future climate projections for the archipelago foresee significant temperature increases which would, given our results, increase rates of Plasmodium infection in bird species in all habitats. Such patterns could be of concern if those increase mortality rates in the unique avifauna of these islands.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app