Add like
Add dislike
Add to saved papers

Acute and repeated dose (28 days) toxicity studies in rats and dogs of recombinant batroxobin, a snake venom thrombin-like enzyme expressed from Pichia pastoris.

Recombinant batroxobin is a thrombin-like enzyme of Bothrops atrox moojeni venom. To evaluate its toxicological effect, it was highly expressed in Pichia pastorisand successfully purified to homogeneity from culture broth supernatant following Good Manufacturing Practice (GMP). The maximum tolerated dose of the recombinant batroxobin was examined in Sprague-Dawley (SD) rat and Beagle dogs following Good Laboratory Practice (GLP) regulations. The approximate lethal dose of recombinant batroxobin was 10 National Institute of Health (NIH) u/kg in male and female rats. Slight test substance-related effects were clearly in male and female dogs at more than 10 NIH u/kg. The maximum tolerated dose (MTD) was considered to be greater than 30 NIH u/kg in dogs. To investigate the repeated dose toxicity of batroxobin, the test item was intravenously administered to groups of SD rat and Beagle dog every day for 4 weeks. We observed that all animals survived the duration of the study without any effects on their mortality. There were no effects in both rats and dogs regarding their clinical signs, body weight, food consumption, ophthalmological examination, urinalysis, hematology, clinical chemistry, organ weightand gross post mortem examinations. The no adverse effect level (NOAEL) of recombinant batroxobin for both males and females is considered to be greater than 2.5 NIH u/kgin rats and 1 NIH u/kg in dogs, respectively. No toxic effects were noted in target organs. In conclusion, these results show a favorable preclinical profile and may contribute clinical development of recombinant batroxobin.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app