Journal Article
Research Support, U.S. Gov't, P.H.S.
Add like
Add dislike
Add to saved papers

Performance of Redox Active and Chelatable Iron Assays to Determine Labile Iron Release From Intravenous Iron Formulations.

Emerging data from global markets outside the United States, where many generic iron sucrose formulations are available, have revealed that non-US generic intravenous (i.v.) iron formulations may have iron release profiles that differ from the reference listed drug (RLD). The first generic i.v. iron approved in the United States was sodium ferric gluconate complex in 2011. We evaluated chelatable and redox labile iron assay methods to measure the amount of labile iron released from i.v. iron formulations in biorelevant matrices in vitro. The majority of published labile iron assays evaluated were not suitable for use in vitro due to overwhelming interference by the presence of the i.v. iron products. However, an optimized high-performance liquid chromatography (HPLC)-based method performed well for use in vitro labile iron detection in a biorelevant matrix. Application of this method may enhance bioequivalence evaluation of generic i.v. iron formulations in the future.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app