Add like
Add dislike
Add to saved papers

Impact of data-driven cardiac respiratory motion correction on the extent and severity of myocardial perfusion defects with free-breathing CZT SPECT.

BACKGROUND: We previously reported the clinical feasibility and positive impact on image characteristics of a data-driven cardiac respiratory motion (RM) correction method (REGAT) applicable to CZT SPECT myocardial perfusion imaging (MPI). Here, we evaluate its impact on the extent and severity of myocardial perfusion defects (MPD).

METHODS: We included 25 patients having a 1-day 99m Tc-Tetrofosmin stress/rest MPI acquired with multi-pinhole CZT SPECT. Acquisitions were processed with REGAT to generate mean RM gated SPECT. These were summed either after (R-SPECT) or without realignment (NR-SPECT). We noted the maximal cardiac RM shift in the 3 axes of the left ventricle (LV). Both visual and semi-quantitative analyses of myocardial tracer uptake were realized. Studies were classified as having an impact on the extent/severity of MPD with REGAT if ≥1 segment presented a severity score changing by ≥1 level between NR-SPECT and R-SPECT. An impact on the extent of MPD was considered present if at least 1 segment shifted from normal (score = 0) to abnormal (score different from 0) or inversely.

RESULTS: Cardiac RM was >10 mm in 55% of studies. With visual and semi-quantitative analyses, an impact on the extent/severity MPD was observed in 14% of all studies (7/49) and 60% of studies with cardiac RM >15 mm. An impact on the extent of MPD was observed in 5 of the 7 upper listed studies. All studies presenting an impact on MPD had RM in the anterior to inferior LV axis >10 mm.

CONCLUSIONS: A substantial number of MPI studies presented significant cardiac RM. Cardiac RM compensation showed a frequent impact on the extent/severity of MPD.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app