Add like
Add dislike
Add to saved papers

The invariance of production per unit of food consumed in fish populations.

Theory in Biosciences 2017 December
The amount of biomass production per unit of food consumed (P/Q) represents an important quantity in ecosystem functioning, because it indicates how efficient a population transforms ingested food into biomass. Several investigations have noticed that P/Q remains relatively constant (or invariant) across fish population that feed at the same food-type level (carnivorous/herbivorous). Nevertheless, theoretical explanation for this invariant is still lacking. In this paper, we demonstrate that P/Q remains invariant across fish populations with stable-age distribution. Three key assumptions underpin the P/Q invariant: (1) the ratio between natural mortality M and von Bertalanffy growth parameter k (M/k ratio) should remain invariant across fish populations; (2) a parameter defining the fraction of ingested food available for growth needs to remain constant across fish that feed at the same trophic level; (3) third, the ratio between length at age 0 ([Formula: see text]) and asymptotic length ([Formula: see text]) should be constant across fish populations. The influence of these assumptions on the P/Q estimates were numerically assessed considering fish populations of different lifespan. Numerical evaluations show that the most critical condition highly relates to the first assumption, M/k. Results are discussed in the context of the reliability of the required assumption to consider the P/Q invariant in stable-age distributed fish populations.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app