Add like
Add dislike
Add to saved papers

Application of 1 H and 27 Al magic angle spinning solid state NMR at 60kHz for studies of Au and Au-Ni catalysts supported on boehmite/alumina.

In this work for the first time we show the power of solid state NMR spectroscopy in structural analysis of alumina and catalysts supported on the alumina surface employing very fast (60kHz) magic angle spinning (MAS) technique. In the methodological part we demonstrate that under such MAS condition, cross-polarization (CP) from proton to aluminum is an efficient process when a very weak 27 Al RF field is applied. The mechanism of CP transfer and the Hartmann-Hahn (H-H) matching conditions were tested for 27 Al RF fields equal to 3.3 and 8.3kHz. It has been found that double quantum (DQ) CP/MAS is the best choice for H-H set with RF =3.3kHz. It has been also proved that the quality of 1 H-27 Al CP/MAS spectra strongly depends on 27 Al carrier offset. Applied to γ-alumina, this method revealed that 1 H-27 Al CP/MAS at 60kHz is extremely useful for mapping the distribution of hydroxyl groups on the surface. Indeed, the AlV sites, which are not easily detected with Single Pulse Experiment (SPE), are clearly seen when 1 H-27 Al CP/MAS is applied. Utilizing 2D 1 H-27 Al CP/MAS HETCOR experiment it was possible to assign the proton positions and to correlate them with aluminum centers. Studies of mono- (Au) and bi- (Au-Ni) metallic catalysts supported on boehmite/alumina carrier employing 1D and 2D HETCOR experiments clearly show that distributions of hydroxyl groups for both systems are dramatically different.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app