Add like
Add dislike
Add to saved papers

Selective chromatographic separation of polycarbonate according to hydroxyl end-groups using a porous graphitic carbon column.

Porous graphitic carbon (PGC) has shown unique separation efficiency in liquid chromatography for a wide range of substance classes. In the characterization of polymers PGC has particularly been used for analysis of polyolefins. Its retention mechanisms differ dramatically from those of silica-based stationary phases and therefore allow interesting applications. Due to its unprecedented retention mechanisms PGC does not only promise good separation performance for polyolefins but also for more polar polymers such as Polycarbonate (PC). In this study, we determined the critical conditions of PC on PGC using CHCl3/dichlorobenzene (DCB) and CHCl3/trichlorobenzene (TCB) as eluents achieving separations according to hydroxyl end-groups, which was confirmed by MALDI-TOF-MS analysis. As the content of TCB at the critical point was lower compared to that of DCB, it was concluded that TCB is a stronger desorption promoting eluent than DCB for the present system. The temperature influence on the critical point was then investigated revealing that with increasing temperature the content of desorption promoting eluent has to be raised in order to achieve critical conditions. Furthermore, a peak shifting over time was observed using TCB as desorption promoting eluent, which was attributed to irreversibly adsorbed PC on the column material. However, when a flow cell-IR detector was applied monitoring the eluted samples, a recovery rate close to 100% was found.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app