Add like
Add dislike
Add to saved papers

Oxidized multiwalled carbon nanotubes decorated with silver nanoparticles for fluorometric detection of dimethoate.

Food Chemistry 2017 June 2
A novel method for the detection of dimethoate based on the peroxidase-like activity of silver-nanoparticles-modified oxidized multiwalled carbon nanotubes (AgNPs/oxMWCNTs) has been developed. The synthesized AgNPs/oxMWCNTs showed excellent peroxidease-like catalytic activity in hydrogen peroxide-Amplex red (AR) system (AR is oxidized to resorufinat, with the resorufin fluorescence at 584nm being used to monitor the catalytic activity). After dimethoate was added to AgNPs/oxMWCNTs, the interaction between dimethoate and the AgNPs inhibited the catalytic activity of AgNPs/oxMWCNTs. The decrease in fluorescence was used for the detection of dimethoate in the range of 0.01-0.35μgmL(-1) (R(2)=0.998) with a detection limit of 0.003μgmL(-1) (signal/noise=3). This method exhibited good selectivity for the detection of dimethoate even in the presence of high concentration of other pesticides. Consequently, the method was applied to measure the concentration of dimethoate residue in lake water and fruit, thus obtaining satisfactory results.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app