Add like
Add dislike
Add to saved papers

Effects of nonionic surfactants on pellet formation and the production of β-fructofuranosidases from Aspergillus oryzae KB.

Food Chemistry 2017 June 2
Aspergillus oryzae KB produces two β-fructofuranosidases (F1 and F2). F1 has high transferring activity and produces fructooligosaccharides from sucrose. Mycelial growth pellets were altered by the addition of Tween 20, 40 and 80 (HLB=16.7, 15.6 and 15.0, respectively) in liquid medium cultures to form small spherical pellets. The particle size of the pellets decreased with the HLB value, which corresponds to an increase in surfactant hydrophobicity. Selective F1 production and pellet size were maximized using Tween 20. Adding polyoxyethylene oleyl ethers (POEs) with various degrees of polymerization (2, 7, 10, 20 and 50: HLB=7.7, 10.7, 14.7, 17.2 and 18.2, respectively) was investigated. A minimum mean particle size was obtained using a POE with DP=10, HLB=14.7. The POE surfactants had little effect on the selective production of F1. The formation of filamentous pellets depended on the surfactant HLB value, and F1 enzymes were produced most efficiently using Tween 20.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app