Add like
Add dislike
Add to saved papers

Förster Resonance Energy Transfer-Paired Hydrogel Forming Silk-Elastin-Like Recombinamers by Recombinant Conjugation of Fluorescent Proteins.

In the last decades, recombinant structural proteins have become very promising in addressing different issues such as the lack of traceability of biomedical devices or the design of more sensitive biosensors. Among them, we find elastin-like recombinamers (ELRs), which can be designed to self-assemble into diverse structures, such as hydrogels. Furthermore, they might be combined with other protein polymers, such as silk, to give silk-elastin-like recombinamers (SELRs), holding the properties of both proteins. In this work, due to their recombinant nature, we have fused two different fluorescent proteins (FPs), i.e., the green Aequorea coerulescens enhanced green fluorescent protein and the near-infrared eqFP650, to a SELR able to form irreversible hydrogels through physical cross-linking. These recombinamers showed an emission of fluorescence similar to the single FPs, and they were capable of forming hydrogels with different stiffness (G' = 60-4000 Pa) by varying the concentration of the SELR-FPs. Moreover, the absorption spectrum of SELR-eqFP650 showed a peak greatly overlapping the emission spectrum of the SELR-Aequorea coerulescens enhanced green fluorescent protein. Hence, this enables Förster resonance energy transfer (FRET) upon the interaction between two SELR molecules, each one containing a different FP, due to the stacking of silk domains at any temperature and to the aggregation of elastin-like blocks above the transition temperature. This effect was studied by different methods, and a FRET efficiency of 0.06-0.2 was observed, depending on the technique used for its calculation. Therefore, innovative biological applications arise from the combination of SELRs with FPs, such as enhancing the traceability of hydrogels based on SELRs intended for tissue engineering, the development of biosensors, and the prediction of FRET efficiencies of novel FRET pairs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app