Add like
Add dislike
Add to saved papers

Analysis of the roles of dietary protein and calcium in fluoride-induced changes in T-lymphocyte subsets in rat.

The roles of dietary protein (Pr) and calcium (Ca) levels on the changes in T-lymphocyte subsets induced by excessive fluoride (F) intake were assessed using rats that were malnourished for 120 days as a model. The CD(4+) and CD(8+) T-lymphocytes in the spleen tissue were determined by flow cytometry and immunofluorescence assay. The percentages of CD(3+) , CD(4+) , and CD(8+) T-lymphocytes were reduced in the spleen of rats exposed to excessive F, and malnutrition aggravated these changes in the T-lymphocytes. In addition, the mRNA expression levels of IL-1β, IL-2, IL-6, TNF-α, and IFN-γ in the spleen were downregulated significantly. We also reported herein the increased apoptosis ratio following caspase-9 and caspase-3 upregulation in the spleen of rats exposed to excessive amount of F. Light and transmisison electron microscopy revealed the irregularly arranged lymphocytes, few lymph nodules and the apoptotic characteristic of lymphocytes, which are caused by the increased expression of caspase. In addition, Pr and Ca supplementation reversed the morphologic and T-lymphocytic changes in spleen under malnutrition. Taken together, our results revealed an endogenous caspase-mediated mechanism of regulating the apoptosis of the T-lymphocyte subsets, as well as the immune-related cytokine secretion, which reduces the immune function in F-induced rats. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 1587-1595, 2017.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app