Add like
Add dislike
Add to saved papers

Overcoming Intrinsic Restriction Enzyme Barriers Enhances Transformation Efficiency in Arthrospira platensis C1.

The development of a reliable genetic transformation system for Arthrospira platensis has been a long-term goal, mainly for those trying either to improve its performance in large-scale cultivation systems or to enhance its value as food and feed additives. However, so far, most of the attempts to develop such a transformation system have had limited success. In this study, an efficient and stable transformation system for A. platensis C1 was successfully developed. Based on electroporation and transposon techniques, exogenous DNA could be transferred to and stably maintained in the A. platensis C1 genome. Most strains of Arthrospira possess strong restriction barriers, hampering the development of a gene transfer system for this group of cyanobacteria. By using a type I restriction inhibitor and liposomes to protect the DNA from nuclease digestion, the transformation efficiency was significantly improved. The transformants were able to grow on a selective medium for more than eight passages, and the transformed DNA could be detected from the stable transformants. We propose that the intrinsic endonuclease enzymes, particularly the type I restriction enzyme, in A. platensis C1 play an important role in the transformation efficiency of this industrial important cyanobacterium.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app