Add like
Add dislike
Add to saved papers

Visualization of Phosphatidylinositol 3,5-Bisphosphate Dynamics by a Tandem ML1N-Based Fluorescent Protein Probe in Arabidopsis.

Phosphatidylinositol 3,5-bisphosphate [PI(3,5)P2] is a low-abundance phospholipid known to be associated with a wide variety of physiological functions in plants. However, the localization and dynamics of PI(3,5)P2 in plant cells remain largely unknown, partially due to the lack of an effective fluorescent probe. Using Arabidopsis transgenic plant expressing the PI(3,5)P2-labeling fluorescent probe (tagRFP-ML1N*2) developed based on a tandem repeat of the cytosolic phosphoinositide-interacting domain (ML1N) of the mammalian lysosomal transient receptor potential cation channel, Mucolipin 1 (TRPML1), here we show that PI(3,5)P2 is predominantly localized on the limited membranes of the FAB1- and SNX1-positive late endosomes, but rarely localized on the membranes of plant vacuoles or trans-Golgi network/early endosomes of cortical cells of the root differentiation zone. The late endosomal localization of tagRFP-ML1N*2 is reduced or abolished by pharmacological inhibition or genetic knockdown of expression of genes encoding PI(3,5)P2-synthesizing enzymes, FAB1A/B, but markedly increased with FAB1A overexpression. Notably, reactive oxygen species (ROS) significantly increase late endosomal levels of PI(3,5)P2. Thus, tandem ML1N-based PI(3,5)P2 probes can reliably monitor intracellular dynamics of PI(3,5)P2 in Arabidopsis cells with less binding activity to other endomembrane organelles.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app