Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Introducing transgalactosylation activity into a family 42 β-galactosidase.

Glycobiology 2017 May 2
Chemo-enzymatic synthesis of oligosaccharides exploits the diversity of glycosidases and their ability to promote transglycosylation reactions in parallel with hydrolysis. Methods to increase the transglycosylation/hydrolysis ratio include site-directed mutagenesis and medium modification. The former approach was successful in several cases and has provided the best synthetic yields with glycosynthases-mutants at the catalytic nucleophile position that promote transglycosylation with high efficiency, but do not hydrolyze the oligosaccharide products. Several glycosidases have proven recalcitrant to this conversion, thus alternative methods to increase the transglycosylation/hydrolysis ratio by mutation would be very useful. Here we show that a mutant of a β-galactosidase from Alicyclobacillus acidocaldarius in an invariant residue in the active site of the enzymes of this family (glutamic acid 361) carries out efficient transglycosylation reactions on different acceptors only in the presence of external ions with yields up to 177-fold higher than that of the wild type. This is the first case in which sodium azide and sodium formate in combination with site-directed mutagenesis have been used to introduce transglycosylation activity into a glycosidase. These observations will hopefully guide further efforts to generate useful synthases.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app