Add like
Add dislike
Add to saved papers

Design and optimization for main support structure of a large-area off-axis three-mirror space camera.

Applied Optics 2017 Februrary 2
To ensure excellent dynamic and static performance of large-area, off-axis three-mirror anastigmat (TMA)-space cameras, and to realize a lighter weight for the entire system, a truss support structure design is applied in this study. In contrast to traditional methods, this paper adopts topology optimization based on the solid isotropic materials with penalization method on the truss structure design. Through reasonable object function and constraint choice, optimal topology results that have concerned the effect of gravity in the X, Y, and Z axis are achieved. Subsequently, the initial truss structure is designed based on the results and manufacturing technology. Moreover, to reduce the random vibration response of the secondary mirror and fold mirror without mechanical performance decline of the whole truss, a weighted optimization of truss size is proposed and the final truss structure is achieved. Finite element analysis and experiments have confirmed the reliability of the design and optimization method. The designed truss-structure camera maintains excellent static performance with the relative optical axis angle between the primary mirror and corresponding mirrors (secondary mirror and fold mirror) being less than 5.3 in. Dynamic performances, such as random and sinusoidal vibration responses, also met the requirements that the acceleration RMS value for mount points of the fold mirror should be less than 20 g and the primary frequency reached 97.2 Hz.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app