Add like
Add dislike
Add to saved papers

All-normal dispersion fiber lasers with magneto-optical polarization controllers.

Applied Optics 2017 January 21
An all-normal dispersion fiber laser mode-locked by nonlinear polarization evolution is presented in this paper. A magneto-optical polarization controller is employed in a fiber laser to optimize the polarization state and mode-locking operation. In order to provide an adjustable and large enough magnetic field for magneto-optical crystals, a magnetic yoke is designed with silicon steel and copper coil. The Q-switched and continuous-wave mode-locking regime of the fiber laser are investigated experimentally. At a pumping power of 2.08 W, the laser can generate stable mode-locking pulses with an average power of 213 mW. The repetition rate and the pulse duration are 63.7 MHz and 6.2 ps, respectively, corresponding to a pulse energy of 3.34 nJ and a peak power of 539 W. The laser can operate continuously in mode-locking states over five hours with almost no variation in pulse profile, optical spectrum, and output power.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app