Add like
Add dislike
Add to saved papers

Establishment of a method for evaluating endothelial cell injury by TNF-α in vitro for clarifying the pathophysiology of virus-associated acute encephalopathy.

BACKGROUND: Virus-associated acute encephalopathy (VAE) is a severe central nervous system complication caused by common viral infections in children. The pathophysiology of VAE is thought to be endothelial injury. This study was designed to establish an in vitro VAE model for evaluating endothelial injury caused by the proinflammatory cytokine TNF-α.

METHODS: Transwell-grown human umbilical vein endothelial cells (HUVECs) monolayers were incubated with serially diluted TNF-α. Transendothelial electrical resistance (TER) was measured using impedance spectroscopy. Permeability changes of HUVECs after TNF-α treatment were determined by fluorescein isothiocyanate (FITC)-conjugated dextran. Moreover, TNF-α-induced morphological changes in claudin-5 and apoptosis were observed by immunofluorescent staining.

RESULTS: The decrease in TER, time of TER recovery to baseline, and increase in permeability were all dependent on TNF-α concentration. Immunofluorescent staining showed that claudin-5 was delocalized after TNF-α treatment in a dose-dependent manner. In addition, some apoptotic cells were observed at high TNF-α concentrations.

CONCLUSION: TER measurement combined with a permeability assay could be useful for evaluating vascular endothelial cell permeability in an in vitro model. These evaluation methods will contribute to both the development of specific treatments focusing on vascular permeability, and the search for a novel therapeutic strategy in VAE treatment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app