JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Extracellular polyamines-induced proliferation and migration of cancer cells by ODC, SSAT, and Akt1-mediated pathway.

High levels of polyamines were observed and were related to a poor prognosis in cancer patients. However, the mechanism is not obvious. The aim of this study is to mimic the extracellular polyamines in a tumor microenviroment and to explore the role of extracellular polyamines in the proliferation and migration of cancer cells. Three different concentrations of polyamines composed of putrescine, spermidine, and spermine were used. Colony formation assay, wound healing assay, and transwell migration assay were performed. Akt1-overexpression cells were constructed. The related protein expression was examined using a western blot. In this study, polyamines promoted colony formation and cell migration in a concentration-dependent and time-dependent manner. Polyamines upregulated the expression of ornithine decarboxylase (ODC), SSAT, Akt1, Akt, hypoxia-inducible factors-1α, vascular endothelial growth factor, and matrix metalloproteinases, and downregulated p27 expression. The effects of combination of polyamines and Akt1 overexpression on colony formation and migration were more obvious than the effects of Akt1 overexpression alone. In Akt1-overexpression cells, polyamines also upregulated the expression of ODC, SSAT, hypoxia-inducible factors-1α, vascular endothelial growth factor, and matrix metalloproteinases and downregulated p27 expression. In conclusion, extracellular polyamines induced proliferation and cancer cell migration by inducing ODC and SSAT expression, and the Akt1-mediated pathway.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app