Add like
Add dislike
Add to saved papers

Cobalt(II) chloride adducts with acetonitrile, propan-2-ol and tetrahydrofuran: considerations on nuclearity, reactivity and synthetic applications.

High-spin cobalt(II) complexes are considered useful building blocks for the synthesis of single-molecule magnets (SMM) because of their intrinsic magnetic anisotropy. In this work, three new cobalt(II) chloride adducts with labile ligands have been synthesized from anhydrous CoCl2 , to be subsequently employed as starting materials for heterobimetallic compounds. The products were characterized by elemental, spectroscopic (EPR and FT-IR) and single-crystal X-ray diffraction analyses. trans-Tetrakis(acetonitrile-κN)bis(tetrahydrofuran-κO)cobalt(II) bis[(acetonitrile-κN)trichloridocobaltate(II)], [Co(C2 H3 N)4 (C4 H8 O)2 ][CoCl3 (C2 H3 N)]2 , (1), comprises mononuclear ions and contains both acetonitrile and tetrahydrofuran (thf) ligands, The coordination polymer catena-poly[[tetrakis(propan-2-ol-κO)cobalt(II)]-μ-chlorido-[dichloridocobalt(II)]-μ-chlorido], [Co2 Cl4 (C3 H8 O)4 ], (2'), was prepared by direct reaction between anhydrous CoCl2 and propan-2-ol in an attempt to rationalize the formation of the CoCl2 -alcohol adduct (2), probably CoCl2 (HOi Pr)m . The binuclear complex di-μ-chlorido-1:2κ4 Cl:Cl-dichlorido-2κ2 Cl-tetrakis(tetrahydrofuran-1κO)dicobalt(II), [Co2 Cl4 (C4 H8 O)4 ], (3), was obtained from (2) after recrystallization from tetrahydrofuran. All three products present cobalt(II) centres in both octahedral and tetrahedral environments, the former usually less distorted than the latter, regardless of the nature of the neutral ligand. Product (2') is stabilized by an intramolecular hydrogen-bond network that appears to favour a trans arrangement of the chloride ligands in the octahedral moiety; this differs from the cis disposition found in (3). The expected easy displacement of the bound solvent molecules from the metal coordination sphere makes the three compounds good candidates for suitable starting materials in a number of synthetic applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app