Add like
Add dislike
Add to saved papers

Shape-Controllable Gold Nanoparticle-MoS 2 Hybrids Prepared by Tuning Edge-Active Sites and Surface Structures of MoS 2 via Temporally Shaped Femtosecond Pulses.

Edge-active site control of MoS2 is crucial for applications such as chemical catalysis, synthesis of functional composites, and biochemical sensing. This work presents a novel nonthermal method to simultaneously tune surface chemical (edge-active sites) and physical (surface periodic micro/nano structures) properties of MoS2 using temporally shaped femtosecond pulses, through which shape-controlled gold nanoparticles are in situ and self-assembly grown on MoS2 surfaces to form Au-MoS2 hybrids. The edge-active sites with unbound sulfurs of laser-treated MoS2 drive the reduction of gold nanoparticles, while the surface periodic structures of laser-treated MoS2 assist the shape-controllable growth of gold nanoparticles. The proposed novel method highlights the broad application potential of MoS2 ; for example, these Au-MoS2 hybrids exhibit tunable and highly sensitive SERS activity with an enhancement factor up to 1.2 × 107 , indicating the marked potential of MoS2 in future chemical and biological sensing applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app