Add like
Add dislike
Add to saved papers

Controlled aggregation and cell uptake of thermoresponsive polyoxazoline-grafted superparamagnetic iron oxide nanoparticles.

Nanoscale 2017 Februrary 24
Hydrophilic polymer-coated iron oxide nanoparticles are potential materials for a plethora of applications in the biotechnological field. Typical such polymers, e.g. dextran or poly(ethylene glycol), lack the ability to tailor the biological response to an environmental trigger, while common responsive polymers such as poly(N-isopropylacrylamide) or poly(acrylic acid) are not suitable for biomedical applications. We present the synthesis and characterization of superparamagnetic iron oxide nanoparticles with thermoresponsive polyoxazoline brushes grafted at unprecedented density using nitrodopamine anchor chemistry. Reversible aggregation/deaggregation is observed in water and biological medium, confirming control over the colloidal stability. Thermal switching of the solubility could only be achieved by global heating of the sample, while local magnetothermal heating did not produce a sufficiently strong temperature gradient through the brush. Varying the polymer composition allows for tuning of the lower critical solution temperature (LCST) as well as the average nanoparticle cluster size obtained upon heating. The LCST of polyoxazolines and the thermal colloidal stability are shown to be greatly affected by ion concentration, by polymer grafting density and also by the presence of serum protein; this shows that transition temperatures of free polymers in water can be very misleading for the design of polymer-coated nanomaterials for biomedical applications. Finally, the thermoresponsive SPION are shown to be non-cytotoxic and with a low cell uptake scaling with the hydration of the polymer brush, which is tuned by the polymer composition. Thus, we demonstrate that pozylated nanoparticles provide the advantages of PEG- and PNIPAM-grafted nanoparticles, but provide a tunable and more easily functionalizable platform for further development.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app