JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

High-performance varistors simply by hot-dipping zinc oxide thin films in Pr 6 O 11 : Influence of temperature.

Scientific Reports 2017 Februrary 4
High-performance ZnO-Pr6 O11 thin-film varistors were fabricated simply by hot-dipping oxygen-deficient zinc oxide thin films in Pr6 O11 powder. The films had a composition of ZnO0.81 and a thickness of about 200 nm, which were deposited by radio frequency magnetron sputtering a sintered zinc oxide ceramic target. Special attention was paid on the temperature dependence of the varistors. In 50 min with hot-dipping temperature increased from 300-700 °C, the nonlinear coefficient (α) of the varistors increased, but with higher temperature it decreased again. Correspondingly, the leakage current (IL ) decreased first and then increased, owing mainly to the formation and destroying of complete zinc oxide/Pr6 O11 grain boundaries. The breakdown field (E1mA ) decreased monotonously from 0.02217 to 0.01623 V/nm with increasing temperature (300-800 °C), due to the decreased number of effective grain boundaries in the varistors. The varistors prepared at 700 °C exhibited the optimum nonlinear properties with the highest α = 39.29, lowest IL  = 0.02736 mA/cm2 , and E1mA  = 0.01757 V/nm. And after charge-discharge at room temperature for 1000 times, heating at 100 or 250 °C for up to 100 h, or applying at up to 250 °C, the varistors still performed well. Such nanoscaled thin-film varistors will be very promising in electrical/electronic devices working at low voltage.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app