Journal Article
Review
Add like
Add dislike
Add to saved papers

Cartilage Oligomeric Matrix Protein: Matricellular and Matricrine Signaling in Cardiovascular Homeostasis and Disease.

Cardiovascular (CV) diseases remain a leading cause of morbidity and mortality in the world. Increasing the understanding of the pathogenesis of various CV diseases may provide novel therapeutic targets to improve their prevention and treatment. Cartilage oligomeric matrix protein (COMP), also known as thrombospondin-5 (TSP-5), is a matricellular protein that is abundantly expressed in both cartilage and the CV system. Our group and others have identified COMP as playing critical roles in maintaining CV homeostasis. COMP, expressed and produced by vascular smooth muscle cells (VSMCs), maintains VSMC contractile phenotypes. COMP deficiency enhances VSMC migration and aggravates VSMC calcification and atherosclerosis. Moreover, a lack of COMP leads to spontaneous dilated cardiomyopathy in mice. COMP is also secreted by platelets in circulating blood and negatively regulates haemostasis and thrombosis. A series of COMP binding proteins, such as integrin α7β1, integrin β3, thrombin, and bone morphogenetic protein 2, have been identified in the CV system, and they have been determined to mediate various COMP functions. The matrix metalloproteinase (A Disintegrin and Metalloproteinase with Thrombospondin motifs) ADAMTS-7 is a regulatory enzyme that is responsible for the degradation of COMP in the CV system. ADAMTS-7 expression correlates with atherosclerosis and vascular calcification in both human genome-wide association studies and in vivo mice models via COMP-dependent and COMP-independent mechanisms. In this review, we summarize what is currently known about the matricellular and matricrine signaling of COMP mediated by its respective binding partners as well as its proteolytic regulation by ADAMTS-7 in CV disease.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app