Add like
Add dislike
Add to saved papers

Toxicodynamic modeling of zebrafish larvae to metals using stochastic death and individual tolerance models: comparisons of model assumptions, parameter sensitivity and predictive performance.

Ecotoxicology 2017 April
Process-based toxicodynamic (TD) models are playing an increasing role in predicting chemical toxicity to aquatic organism. Stochastic death (SD) and individual tolerance distribution (IT) are two often used assumptions in TD models which could lead to different consequences for risk assessment of chemicals. Here, using the toxicity data of single (Cu, Zn, Cd, and Pb) and their binary metal mixtures on survival of zebrafish larvae, we assessed the parameter sensitivity and evaluated the predictive performance of SD and IT models. The sensitivity analysis indicated the parameters related to toxicodynamics such as k k and threshold, had a great influence on the SD model's output and α had a great influence on the IT model's output. The predicted survival probability was highly sensitive to the assumptions of SD or IT models, and the SD model explained toxicity of single metal and binary metal mixtures better than IT model. Our results suggested that SD model is more suitable in assessing the metal toxicity to zebrafish larvae. Moreover, different combinations of laboratory metal-specific and species-specific experiments with SD and IT models need further study for better understanding and predicting toxic effects for different metals and organisms.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app