Add like
Add dislike
Add to saved papers

The effect of temperature, gradient, and load carriage on oxygen consumption, posture, and gait characteristics.

PURPOSE: The purpose of this experiment was to evaluate the effect of load carriage in a range of temperatures to establish the interaction between cold exposure, the magnitude of change from unloaded to loaded walking and gradient.

METHODS: Eleven participants (19-27 years) provided written informed consent before performing six randomly ordered walking trials in six temperatures (20, 10, 5, 0, -5, and -10 °C). Trials involved two unloaded walking bouts before and after loaded walking (18.2 kg) at 4 km · h(-1), on 0 and 10% gradients in 4 min bouts.

RESULTS: The change in absolute oxygen consumption (V̇O2) from the first unloaded bout to loaded walking was similar across all six temperatures. When repeating the second unloaded bout, V̇O2 at both -5 and -10 °C was greater compared to the first. At -10 °C, V̇O2 was increased from 1.60 ± 0.30 to 1.89 ± 0.51 L · min(-1). Regardless of temperature, gradient had a greater effect on V̇O2 and heart rate (HR) than backpack load. HR was unaffected by temperature. Stride length (SL) decreased with decreasing temperature, but trunk forward lean was greater during cold exposure.

CONCLUSION: Decreased ambient temperature did not influence the magnitude of change in V̇O2 from unloaded to loaded walking. However, in cold temperatures, V̇O2 was significantly higher than in warm conditions. The increased V̇O2 in colder temperatures at the same exercise intensity is predicted to ultimately lead to earlier onset of fatigue and cessation of exercise. These results highlight the need to consider both appropriate clothing and fitness during cold exposure.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app