Add like
Add dislike
Add to saved papers

Effects of aging and exercise training on the dynamics of vasoconstriction in skeletal muscle resistance vessels.

It is unknown whether aging or exercise training affect the dynamics of arteriolar vasoconstriction.

PURPOSE: We hypothesized that old age will slow, and exercise training will speed, the dynamics of skeletal muscle arteriolar vasoconstriction in resistance vessels of aged rats.

METHOD: Young (6 month old) and aged (24 month old) male Fischer-344 rats were assigned to sedentary (Sed: n = 6/age group) or exercise-trained (ET: n = 5 aged and 6 young; via treadmill running for 10-12 weeks) groups. After completion of training, arterioles from the red portion of the gastrocnemius muscle were removed, cannulated, and exposed to 10(-4) M norepinephrine (NE) or 20 mM caffeine. Changes in luminal diameter were recorded for analysis of constrictor dynamics.

RESULT: Old age blunted all kinetic parameters (i.e., time delay, time constant) resulting in vasoconstriction taking ~3 times as long to reach a steady state (SS) versus younger counterparts for NE (aged-sed: 15.6 ± 6.0 versus young-sed: 4.6 ± 0.5 s; P < 0.05) with a similar time course to caffeine. Exercise training resulted in a similar time to SS between age groups for NE (aged-ET: 6.8 ± 1.6 versus young-ET: 7.0 ± 0.6 s) and caffeine (aged-ET: 7.8 ± 0.6 versus young-ET: 8.6 ± 1.0 s).

CONCLUSION: The results of this study demonstrate that aging blunts the rate of vasoconstriction in skeletal muscle resistance vessels to the sympathetic neurotransmitter NE due, in part, to an attenuated rate of contraction from intracellular calcium release. Further, exercise training speeds the dynamics of constriction to both NE and caffeine with old age.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app