Add like
Add dislike
Add to saved papers

Decreases in Maximal Oxygen Uptake Following Long-duration Spaceflight: Role of Convective and Diffusive O2 Transport Mechanisms.

We have previously predicted that the decrease in maximal oxygen uptake (VO2max) that accompanies time in microgravity reflects decrements in both convective and diffusive O2 transport to the mitochondria of the contracting myocytes. The aim of this investigation was therefore to quantify the relative changes in convective O2 transport (QO2) and O2 diffusing capacity (DO2) following long duration spaceflight. In 9 astronauts, resting hemoglobin concentration ([Hb]), VO2max, maximal cardiac output (QTmax), and differences in arterial and venous O2 contents (CaO2-CvO2) were obtained retrospectively for International Space Station Increments 19 through 33 (April 2009-November 2012). QO2 and DO2 were calculated from these variables via integration of Fick's Principle of Mass Conservation and Fick's Law of Diffusion. VO2max significantly decreased from pre- to post-flight (-53.9 ± 45.5%, P =0.008). The significant decrease in Q ̇_Tmax (-7.8±9.1%, P =0.05), despite an unchanged [Hb] resulted in a significantly decreased QO2 (-11.4±10.5%, P = 0.02). DO2 significantly decreased from pre- to post-flight by -27.5±24.5% (P =0.04), as did the peak CaO2-CvO2 (-9.2±7.5%, P =0.007). Using linear regression analysis, changes in VO2max were significantly correlated with changes in DO2 (R2=0.47; P = 0.04). These data suggest that space flight decreases both convective and diffusive O2 transport. These results have practical implications for future long-duration space missions and highlight the need to resolve the specific mechanisms underlying these spaceflight-induced changes along the O2 transport pathway.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app