Add like
Add dislike
Add to saved papers

A colorimetric/fluorescent dual-mode sensor for ultra-sensitive detection of Hg(2).

Talanta 2017 April 2
A highly sensitive colorimetric/fluorescent dual-mode sensor based on hybridization chain reaction (HCR) combining multifunctional Au NPs is presented for the detection of Hg(2+) in aqueous solution. In Hg(2+) absent solution, the surface of Au NPs was covered by hairpin auxiliary DNAs and a single strand DNA (ssDNA), which prevented Au NPs from salt-induced aggregation. At the same time, the fluorescence intensity of the dye-labeled hairpin probes was significantly quenched by Au NPs. In the presence of Hg(2+), T-Hg(2+)-T coordination chemistry between helper DNA and the hairpin probes was induced which triggered the formation of extended double-stranded DNA (dsDNA) polymers via HCR. The formed dsDNA polymers were stiffer which couldn't attach to Au NPs, resulting in a red-to-blue color change along with salt-induced aggregation of Au NPs for colorimetric sensing. Meanwhile, the fluorescence of dye-labeled DNA turns on. Due to the HCR amplification effect, a highly sensitive detection of Hg(2+) was achieved with detection limit of 0.1nM. Colorimetry is suitable for the analysis in salt solution with concentration lower than 100mM. It serves as an intuitive method that Hg(2+) down to 1.0nM could be identified by naked eyes. For high-concentration salt solutions such as industrial effluent, fluorescent sensing acts as a better choice. Both the color and fluorescence changes of the proposed sensor exhibited high selectivity against other metal ions. Lake water was collected and analyzed using the dual-mode sensor, the results confirmed the practicability of the proposed approach.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app