Add like
Add dislike
Add to saved papers

Selective Blockade of the Ubiquitous Checkpoint Receptor CD47 Is Enabled by Dual-Targeting Bispecific Antibodies.

Molecular Therapy 2017 Februrary 2
CD47 is a ubiquitously expressed immune checkpoint receptor that is often upregulated in cancer. CD47 interacts with its counter-receptor SIRPα on macrophages and other myeloid cells to inhibit cancer cell phagocytosis and drive immune evasion. To overcome tolerability and "antigen sink" issues arising from widespread CD47 expression, we generated dual-targeting bispecific antibodies that selectively block the CD47-SIRPα interaction on malignant cells expressing a specific tumor-associated antigen; e.g., CD19 or mesothelin. These bispecific κλ bodies are fully human, native IgG1 molecules, combining tumor targeting and selective CD47 blockade with immune activating mechanisms mediated by the Fc portion of the antibody. CD47-neutralizing κλ bodies efficiently kill cancer cells in vitro and in vivo but interact only weakly with healthy cells expressing physiological levels of CD47. Accordingly, a κλ body administered to non-human primates showed a typical IgG pharmacokinetic profile and was well tolerated. Importantly, κλ bodies preserve their tumoricidal capabilities in the presence of a CD47 antigen sink. Thus, dual-targeting κλ bodies allow for efficacious yet safe targeting of CD47 in cancer. Such a bispecific design could be applied to limit the extent of neutralization of other ubiquitously expressed therapeutic targets.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app