Add like
Add dislike
Add to saved papers

DMDtoolkit: a tool for visualizing the mutated dystrophin protein and predicting the clinical severity in DMD.

BMC Bioinformatics 2017 Februrary 3
BACKGROUND: Dystrophinopathy is one of the most common human monogenic diseases which results in Duchenne muscular dystrophy (DMD) and Becker muscular dystrophy (BMD). Mutations in the dystrophin gene are responsible for both DMD and BMD. However, the clinical phenotypes and treatments are quite different in these two muscular dystrophies. Since early diagnosis and treatment results in better clinical outcome in DMD it is essential to establish accurate early diagnosis of DMD to allow efficient management. Previously, the reading-frame rule was used to predict DMD versus BMD. However, there are limitations using this traditional tool. Here, we report a novel molecular method to improve the accuracy of predicting clinical phenotypes in dystrophinopathy. We utilized several additional molecular genetic rules or patterns such as "ambush hypothesis", "hidden stop codons" and "exonic splicing enhancer (ESE)" to predict the expressed clinical phenotypes as DMD versus BMD.

RESULTS: A computer software "DMDtoolkit" was developed to visualize the structure and to predict the functional changes of mutated dystrophin protein. It also assists statistical prediction for clinical phenotypes. Using the DMDtoolkit we showed that the accuracy of predicting DMD versus BMD raised about 3% in all types of dystrophin mutations when compared with previous methods. We performed statistical analyses using correlation coefficients, regression coefficients, pedigree graphs, histograms, scatter plots with trend lines, and stem and leaf plots.

CONCLUSIONS: We present a novel DMDtoolkit, to improve the accuracy of clinical diagnosis for DMD/BMD. This computer program allows automatic and comprehensive identification of clinical risk and allowing them the benefit of early medication treatments. DMDtoolkit is implemented in Perl and R under the GNU license. This resource is freely available at https://github.com/zhoujp111/DMDtoolkit , and https://www.dmd-registry.com .

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app