EVALUATION STUDIES
JOURNAL ARTICLE
Add like
Add dislike
Add to saved papers

Highly stable aluminum-based metal-organic frameworks as biosensing platforms for assessment of food safety.

Two unique immunosensors made of aluminum-based metal-organic frameworks (MOFs), namely, 515- and 516-MOFs, with 4,4',4''-nitrilotribenzoic acid (H3NTB) were successfully obtained to efficiently assess food safety. The as-prepared 515- and 516-MOFs exhibited superior thermal and physicochemical stability, high electrochemical activity, and good biocompatibility. Among these immunosensors, 516-MOF showed a preferable biosensing ability toward analytes determined by electrochemical techniques. The developed 516-MOF-based electrochemical biosensor not only demonstrated high sensitivity with low detection limits of 0.70 and 0.40pgmL(-1) toward vomitoxin and salbutamol, respectively, but also showed good selectivity in the presence of other interferences. Therefore, with the advantages of high sensitivity, good selectivity, and simple operation, this new strategy is believed to exhibit great potential for simple and convenient detection of poisonous and harmful residues in food.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app