Add like
Add dislike
Add to saved papers

Nanoscale Cobalt-Manganese Oxide Catalyst Supported on Shape-Controlled Cerium Oxide: Effect of Nanointerface Configuration on Structural, Redox, and Catalytic Properties.

Understanding the role of nanointerface structures in supported bimetallic nanoparticles is vital for the rational design of novel high-performance catalysts. This study reports the synthesis, characterization, and the catalytic application of Co-Mn oxide nanoparticles supported on CeO2 nanocubes with the specific aim of investigating the effect of nanointerfaces in tuning structure-activity properties. High-resolution transmission electron microscopy analysis reveals the formation of different types of Co-Mn nanoalloys with a range of 6 ± 0.5 to 14 ± 0.5 nm on the surface of CeO2 nanocubes, which are in the range of 15 ± 1.5 to 25 ± 1.5 nm. High concentration of Ce3+ species are found in Co-Mn/CeO2 (23.34%) compared with that in Mn/CeO2 (21.41%), Co/CeO2 (15.63%), and CeO2 (11.06%), as evidenced by X-ray photoelectron spectroscopy (XPS) analysis. Nanoscale electron energy loss spectroscopy analysis in combination with XPS studies shows the transformation of Co2+ to Co3+ and simultaneously Mn4+/3+ to Mn2+ . The Co-Mn/CeO2 catalyst exhibits the best performance in solvent-free oxidation of benzylamine (89.7% benzylamine conversion) compared with the Co/CeO2 (29.2% benzylamine conversion) and Mn/CeO2 (82.6% benzylamine conversion) catalysts for 3 h at 120 °C using air as the oxidant. Irrespective of the catalysts employed, a high selectivity toward the dibenzylimine product (97-98%) was found compared with the benzonitrile product (2-3%). The interplay of redox chemistry of Mn and Co at the nanointerface sites between Co-Mn nanoparticles and CeO2 nanocubes as well as the abundant structural defects in cerium oxide plays a key role in the efficiency of the Co-Mn/CeO2 catalyst for the aerobic oxidation of benzylamine.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app