Add like
Add dislike
Add to saved papers

Diffusion-weighted MRI treatment monitoring of primary hypofractionated proton and carbon ion prostate cancer irradiation using raster scan technique.

PURPOSE: To investigate parametric changes in the apparent diffusion coefficient (ADC) at multiple timepoints during and after completion of primary proton and carbon ion irradiation of prostate cancer (PCa) as compared with normal-appearing prostate parenchyma.

MATERIALS AND METHODS: In all, 92 patients with histologically confirmed PCa received either proton or carbon ion hypofractionated radiotherapy (RT). All were prospectively evaluated with diffusion-weighted magnetic resonance imaging (DWI-MRI) at five timepoints: baseline, day 10 during therapy and 6 weeks, 6 months, and 18 months after treatment. Linear mixed models (LMM) were used to evaluate the effects of radiation, antihormonal therapy, time, and type of particle irradiation on manual ADC measurements. ADC differences related to prostate-specific antigen (PSA) relapse according to PSA thresholds and to Vancouver rules and Phoenix criteria were examined using LMM and unpaired Student's t-test.

RESULTS: A measurable and continuous increase of tumor ADC measurements from baseline (1.194 × 10-3 mm2 /s) during (1.350 × 10-3 mm2 /s, day 10, P = 0.006) and after treatment (1.355/1.430/1.490 × 10-3 mm2 /s, week 6 / month 6 / month 18, P = 0.001/<0.001/<0.001) was found. ADC values of normal-appearing control tissue remained unchanged. Androgen deprivation (P ≥ 0.320), different PSA thresholds (P = 0.634), and PSA relapse criteria according to Vancouver rules (P ≥ 0.776) had no effect. A weak association between 18-month measurements and Phoenix criteria (P = 0.046) was found.

CONCLUSION: ADC parametric changes were distinct in tumor tissue, highlighting the ability of diffusion MRI to evaluate different aspects of the microscopic pathophysiology. Although promising, their use as noninvasive imaging biomarkers requires further validation.

LEVEL OF EVIDENCE: 1 Technical Efficacy: Stage 1 J. MAGN. RESON. IMAGING 2017;46:850-860.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app