JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
Add like
Add dislike
Add to saved papers

Numerical simulation of microwave ablation incorporating tissue contraction based on thermal dose.

Tissue contraction plays an important role during high temperature tumor ablation, particularly during device characterization, treatment planning and imaging follow up. We measured such contraction in 18 ex vivo bovine liver samples during microwave ablation by tracking fiducial motion on CT imaging. Contraction was then described using a thermal dose dependent model and a negative thermal expansion coefficient based on the empirical data. FEM simulations with integrated electromagnetic wave propagation, heat transfer, and structural mechanics were evaluated using temperature-dependent dielectric properties and the negative thermal expansion models. Simulated temperature and displacement curves were then compared with the ex vivo experimental results on different continuous output powers. The optimized thermal dose model indicated over 50% volumetric contraction occurred at the temperature over 102.1 °C. The numerical simulation results on temperature and contraction-induced displacement showed a good agreement with experimental results. At microwave powers of 55 W, the mean errors on temperature between simulation and experimental results were 8.25%, 2.19% and 5.67% at 5 mm, 10 mm and 20 mm radially from the antenna, respectively. The simulated displacements had mean errors of 16.60%, 14.08% and 23.45% at the same radial locations. Compared to the experimental results, the simulations at the other microwave powers had larger errors with 10-40% mean errors at 40 W, and 10-30% mean errors at 25 W. The proposed model is able to predict temperature elevation and simulate tissue deformation during microwave ablation, and therefore may be incorporated into treatment planning and clinical translation from numerical simulations.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app