Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Increase in the radioresistance of normal skin fibroblasts but not tumor cells by mechanical injury.

Cell Death & Disease 2017 Februrary 3
The timing of radiation after mechanical injury such as in the case of surgery is considered a clinical challenge because radiation is assumed to impair wound healing. However, the physiological responses and underlying mechanisms of this healing impairment are still unclear. Here, we show that mechanical injury occurring before ionizing radiation decreases radiation-induced cell damage and increases cell repair in normal fibroblasts but not tumor cells in vitro and in vivo. At the molecular level, mechanical injury interrupts focal adhesion complexes and cell-cell cadherin interactions, transducing mechanical signals into intracellular chemical signals via activation of the phosphatidylinositol 3-kinase (PI3K), Akt, and glycogen synthase kinase 3 beta (GSK-3β) pathways. We show that subsequent nuclear translocation of nuclear factor (erythroid-derived 2)-like 2 (Nrf2) and β-catenin strengthen the stemness, antioxidant capabilities, and DNA double-strand break repair abilities of fibroblasts, ultimately contributing to increased radioresistance. Our findings demonstrate that mechanical injury to normal fibroblasts enhances radioresistance and may therefore question conventional wisdom surrounding the timing of radiation after surgery.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app