Add like
Add dislike
Add to saved papers

Highly robust and optimized conjugation of antibodies to nanoparticles using quantitatively validated protocols.

Nanoscale 2017 Februrary 17
Antibody-conjugated nanoparticles (NPs) have attracted great attention in diagnostic and therapeutic applications due to their high sensitivity and specificity for biotargets, as well as their wide applicability. Unfortunately, these features are significantly affected by antibody conjugation methods in terms of conjugation efficiency, orientation of the target binding site in the antibody, and denaturation during chemical conjugation reactions. Furthermore, the number of conjugated antibodies on each NP and the overall targeting efficacy are critical factors for a quantitative bioassay with antibody-conjugated NPs. Herein, we report a versatile and oriented antibody conjugation method using copper-free click chemistry. Moreover, the number of conjugated antibodies and their binding capacity were quantitatively and experimentally evaluated using fluorescently-labeled antibodies and antigens. The strong binding capability of antibody-conjugated NPs prepared using the copper-free click chemistry-based conjugation strategy was 8 times superior to the binding capability seen following the use of the EDC/NHS-coupling method. Additionally, the versatility of the developed antibody conjugation method was also demonstrated by conjugation of the antibody to three kinds of silica-encapsulated NPs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app