Add like
Add dislike
Add to saved papers

Effects of digoxin on cardiac iron content in rat model of iron overload.

BACKGROUND: Plasma iron excess can lead to iron accumulation in heart, kidney and liver. Heart failure is a clinical widespread syndrome. In thalassemia, iron overload cardiomyopathy is caused by iron accumulation in the heart that leads to cardiac damage and heart failure. Digoxin increases the intracellular sodium concentration by inhibition of Na+/K+-ATPase that affects Na+/Ca2+ exchanger (NCX), which raises intracellular calcium and thus attenuates heart failure. The mechanism of iron uptake into cardiomyocytes is not exactly understood.

METHODS: We assessed the effect of different concentrations of digoxin on cardiac iron content in rat model of iron overload. Digoxin had been administrated intraperitoneally (IP) for one week before main study began to assure increased digoxin levels. Group 1 received four IP injections of iron-dextran (12.5mg/100g body weight) every 5 days evenly distributed over 20 days. Groups 2-4 received 0.5, 1 and 5 mg/kg/day IP digoxin, respectively. Last three groups 5-7 received iron-dextran as group 1 and digoxin concentrations 0.5, 1 and 5 mg/kg/day, respectively.

RESULTS: Cardiac iron contents were significantly higher in iron overload groups that received different concentrations (0.5, 1 and 5 mg/kg/day) of digoxin than their counterparts in control groups and this pattern was also observed in pathology assessment.

CONCLUSION: It seems that digoxin plays an important role in iron transport into heart in iron overload state but exact mechanism of this phenomenon is not clear. L-type Ca2+ channels are good candidates that probably could be involved in iron accumulation in cardiomyocytes. Thus it would be better to reconsider digoxin administration in thalassemia and iron overload conditions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app