JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Robust Axonal Regeneration in a Mouse Vascularized Composite Allotransplant Model Undergoing Delayed Tissue Rejection.

Background: Nerve regeneration in vascularized composite allotransplantation (VCA) is not well understood. Allogeneic transplant models experience complete loss of nerve tissue and axonal regeneration without immunosuppressive therapy. The purpose of this study was to determine the impact of incomplete immunosuppression on nerve regeneration. Methods: In this study, transgenic mice (4 groups in total) with endogenous fluorescent protein expression in axons (Thy1-YFP) and Schwann cells (S100-GFP) were used to evaluate axonal regeneration and Schwann cell (SC) migration in orthotopic-limb VCA models with incomplete immunosuppression using Tacrolimus (FK506). Survival and complication rates were assessed to determine the extent of tissue rejection. Nerve regeneration was assessed using serial imaging of axonal progression and SC migration and viability. Histomorphometry quantified the extent of axonal regeneration. Results: Incomplete immunosuppression with FK506 resulted in delayed rejection of skin, muscle, tendon, and bone in the transplanted limb. In contrast, the nerve demonstrated robust axonal regeneration and SC viability based on strong fluorescent protein expression by SCs and axons in transgenic donors and recipients. Total myelinated axon numbers measured at 8 weeks were comparable in all VCA groups and not statistically different from the syngeneic donor control group. Conclusions: Our data suggest that nerve and SCs are much weaker antigens compared with skin, muscle, tendon, and bone in VCA. To our knowledge, this study is the first to prove the weak antigenicity of nerve tissue in the orthotopic VCA mouse model.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app