Add like
Add dislike
Add to saved papers

Advanced Glycation End Products, Oxidation Products, and the Extent of Atherosclerosis During the VA Diabetes Trial and Follow-up Study.

Diabetes Care 2017 April
OBJECTIVE: To determine whether plasma levels of advanced glycation end products and oxidation products play a role in the development of atherosclerosis in patients with type 2 diabetes (T2D) over nearly 10 years of the VA Diabetes Trial and Follow-up Study.

RESEARCH DESIGN AND METHODS: Baseline plasma levels of methylglyoxal hydroimidazolone, Nε-carboxymethyl lysine, Nε-carboxyethyl lysine (CEL), 3-deoxyglucosone hydroimidazolone and glyoxal hydroimidazolone (G-H1), 2-aminoadipic acid (2-AAA), and methionine sulfoxide were measured in a total of 411 participants, who underwent ultrasound assessment of carotid intima-media thickness (CIMT), and computed tomography scanning of coronary artery calcification (CAC) and abdominal aortic artery calcification (AAC) after an average of 10 years of follow-up.

RESULTS: In risk factor-adjusted multivariable regression models, G-H1 was associated with the extent of CIMT and CAC. In addition, 2-AAA was strongly associated with the extent of CAC, and CEL was strongly associated with the extent of AAC. The combination of specific advanced glycation end products and oxidation products (G-H1 and 2-AAA) was strongly associated with all measures of subclinical atherosclerosis.

CONCLUSIONS: Specific advanced glycation end products and metabolic oxidation products are associated with the severity of subclinical atherosclerosis over the long term and may play an important role in the "negative metabolic memory" of macrovascular complications in people with long-standing T2D.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app