JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

A corrected effective density fluid model for gassy sediments.

A corrected effective density fluid model is developed for predicting sound speed dispersion and attenuation coefficient in gassy sediments. An acoustic experiment was undertaken to measure the attenuation coefficient in a frequency band of 600 to 3000 Hz in gassy unsaturated sand. The measured frequency spectra of the attenuation coefficient show four peaks due to bubble resonance. Then a method of using several modified Gaussian functions to model bubble size distribution is proposed to fit measured attenuation data, which shows that the magnitudes of the fitted model attenuation coefficients are broadly in agreement with those measured attenuation data.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app