Add like
Add dislike
Add to saved papers

Photodissociation of acetone from 266 to 312 nm: Dynamics of CH 3 + CH 3 CO channels on the S 0 and T 1 states.

The photodissociation dynamics of acetone (CH3 )2 CO, cooled in a molecular beam, have been explored over the wavelength range 266-312 nm. Nascent CH3 fragments were detected by resonance-enhanced multiphoton ionization, followed by mass-selected ion imaging. For photolysis at λ = 306 nm, the image shows a sharp ring, which, when converted to a translational energy distribution, reveals a narrow Gaussian peak with a maximum at 90% of the available energy. As the photolysis energy is increased, the distribution slowly broadens and shifts to higher recoil translational energy. The fraction of available energy in translation energy decreases in favour of internal energy of the CH3 CO fragment. These observations are consistent with a dynamical model in which the energy of the exit channel barrier on the T1 surface evolves mostly into relative translational energy. Energy in excess of the barrier is partitioned statistically into all degrees of freedom. No evidence was found for any other dynamical pathway producing CH3 fragments, including reaction on S0 or S1 , for dissociation between 306 and 266 nm. For λ > 306 nm, a diffuse, slow recoil component to the image appears. The translational energy distribution for this component is fit well by a statistical prior distribution of energy. We attribute this component to dissociation on the S0 , ground state surface; to our knowledge, this is the first direct observation of this channel. The appearance of S0 dynamics and the disappearance of the T1 component are consistent with previously inferred barrier height on T1 for the production of CH3 CO + CH3 . The possible atmospheric implications of our findings are discussed.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app